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Exome-based genotyping arrays are cost-effective and have recently been used as alternative platforms to whole-exome sequencing.
However, the automated clustering algorithm in an exome array has a genotype calling problem in accuracy for identifying rare
and low-frequency variants. To address these shortcomings, we present a practical approach for accurate genotype calling using the
Illumina Infinium HumanExome BeadChip. We present comparison results and a statistical summary of our genotype data sets.
Our data set comprises 14,647 Korean samples. To solve the limitation of automated clustering, we performed manual genotype
clustering for the targeted identification of 46,076 variants that were identified using GenomeStudio software. To evaluate the
effects of applying custom cluster files, we tested cluster files using 804 independent Korean samples and the same platform. Our
study firstly suggests practical guidelines for exome chip quality control in Asian populations and provides valuable insight into an
association study using exome chip.

1. Introduction

A genotyping array is a cost-effective and efficient platform
for the identification of variants in a large population [1, 2].
Until now, genome-wide association studies (GWASs) have
identified large numbers of variants associated with complex
diseases using genotyping arrays [3]. Most identified variants
are among the common variants (minor allele frequency
(MAF) ≥ 0.05) found throughout the population, even
though detection of rare genetic variants in human popula-
tions is an important aspect of understanding pathophysio-
logical variability in complex diseases [4, 5]. Next-generation
sequencing technologies are effective methods to detect rare
variants in the human genome [2], but these technologies
have higher cost per sample compared with a genotyping
array. Also, because next-generation sequencing has a high
noise-to-signal ratio, experimental validation is necessary
[6]. Exome-based genotyping arrays, such as the Illumina
Infinium HumanExome BeadChip (hereafter referred to as
exome chip) and the Affymetrix Axiom exome array, were
recently introduced. Prices of these platforms are lower than

for other kinds of genotyping arrays. Moreover, exome-based
genotyping has the capacity to discover rare variants in exon
regions associated with complex diseases [7–9].

Genotype calling algorithms based on clusteringmethods
are vulnerable to detecting rare variants. At times, clustering
of rare or low-frequency variants results in spurious genotype
calls. The number of variants remaining after quality control
process can be different according to diverse genotype calling
methods. In addition, because of racial differences in allele
frequencies of polymorphic variants [10], criteria for variants
selection should be different according to ethnicities of pop-
ulations.

Grove et al. proposed a list of best practices for genotype
calling for exome chipmethods following a study with 62,266
participants from seven genotyping centers included in the
Cohorts for Heart and Aging Research in Genomic Epi-
demiology (CHARGE) consortium [11].This genotype calling
method suggested based on CHARGE consortium presented
criteria for identified variants that may contain clustering
errors. Also, this study was largely based on western popu-
lations, as those of African American (𝑛 = 13,605), Caucasian
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Table 1: The number of variants that were excluded after implementing automated clustering guidelines in Illumina GenomeStudio. We
compared criteria of the CHARGE consortium with adjusted criteria in our study using Korean samples. The total number of SNVs was
counted with redundancy. Different categories of our guideline are shown in boldface.

Type CHARGE consortium guidelines Our guidelines
Criteria # of SNVs Criteria # of SNVs

Clustering errors

Call Freq 0.95∼0.99 2,841 Call Freq 0.95∼0.99 2,841
Cluster Sep < 0.4 693 Cluster Sep < 0.4 693
AB Freq > 0.6 1 AB Freq > 0.6 1
AB 𝑅Mean 645 AB 𝑅Mean 645

Het Excess > 0.1 13 Het Excess > 0.1 13
Het Excess < −0.9 17 Het Excess < −0.9 17

MAF < 0.0001 & Call Freq ̸= 1 119,896 MAF < 0.0001 & Call Freq < 0.99 2,171

AA cluster error
AA 𝑇Mean 0.2∼0.3 759 AA 𝑇Mean 0.2∼0.3 759
AA 𝑇 Dev > 0.025 2,195 AA 𝑇 Dev > 0.025 2,195

AA Freq = 1 & Call Freq < 1 43,012 AA Freq = 1 & Call Freq < 0.99 561

AB cluster error

AB 𝑇Mean 0.2∼0.3, 847 AB 𝑇Mean 0.2∼0.3, 847
AB 𝑇Mean 0.7∼0.8 2,685 AB 𝑇Mean 0.7∼0.8 2,685
AB 𝑇 Dev ≥ 0.07 272 AB 𝑇 Dev ≥ 0.07 272

AB Freq = 0 &MAF > 0 70,597 AB Freq = 0 &MAF > 0.0002 11,572

BB cluster error
BB 𝑇Mean 0.7∼0.8 690 BB 𝑇Mean 0.7∼0.8 690
BB 𝑇 Dev > 0.025 2,742 BB 𝑇 Dev > 0.025 2,742

BB Freq = 1 & Call Freq < 1 16,352 BB Freq = 1 & Call Freq < 0.99 92
Total # of SNVs 264,257 46,076

SNV: single nucleotide variation; MAF: minor allele frequency.

(𝑛 = 43,869), and Hispanic ancestry (𝑛 = 2,129) were repre-
sented in relatively large numbers, whereas only 777 Asian
samples of 62,266 were analyzed. The subjects recruited for
exome chip design listed in a web site, Exome Chip Design-
Genome Analysis Wiki (http://genome.sph.umich.edu/wiki/
Exome Chip Design), were also mainly comprised of Euro-
pean ancestry, but a small fraction of Asians including 327
Chinese individuals. In addition, Guo et al. have suggested
a protocol for exome chip data consisting of 39,000 samples
mainly composed of European and African ancestry [12].
Therefore, additional information from Asian samples is
needed to provide efficient background data for genotype
calling for Asian populations.

Here, we propose a practical method for accurate geno-
type calling using exome chip technologies with data from
14,647 Korean samples. Further, we provide workflow for
manual reclustering and present a change in genotype calling
quality following the use of custom cluster files.

2. Materials and Methods

2.1. Data Description. We performed a two-stage analysis as
part of a novel genotype calling method. In the first stage,
we established an efficient genotype calling process for 14,647
Korean-based data points and built a custom cluster file
using quality control process that included manual recluster-
ing for low-frequency cluster data. The Korean individuals
belong to three cohorts that comprise the Korean Genome
Epidemiology Study (KoGES): Ansan/Ansung (𝑛 = 8,012),
Health Examinee (HEXA, 𝑛 = 3,448), and the Cardiovascular

Association (CAVAS) cohort (𝑛 = 3,187). In the second
stage, we applied knowledge from our custom cluster file to
independent samples, namely, 804 Korean diabetic retinopa-
thy samples recruited from the Seoul National University
Bundang Hospital.

2.2. Ethics Statement. Written informed consents were pro-
vided to all of the participants in this study. The study was
approved by the Institutional Review Board of Korea Centers
for Disease Control and Prevention and Seoul University
Bundang Hospital.

2.3. Overall Workflow and Manual Clustering. All 14,647 Ko-
rean subjects were genotyped with an exome chip. Each
genotype was automatically clustered once by Illumina Gen-
omeStudio v2011.1 software, and then we applied criteria that
have been used in the CHARGE consortium for manual
reclustering and visual inspection. Parameters adjusted for
criteria when using GenomeStudio software are listed in
Table 1.

When we applied criteria provided by the CHARGE
consortium, over half of variants were identified to be
required for manual reclustering. In response, we adjusted a
few criteria scores to fit our data set. Call frequency rates in
all categories decreased from 1 to 0.99 and MAF in the AB
category cluster error increased from 0 to 0.0002 (Table 1).
Subsequently, variants that needed manual reclustering were
selected by the adjusted criteria.

The customized cluster files (∗.egt), which have cluster
information containing manual reclustering criteria, were
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Table 2: Genotype ratio based on minor allele frequency (MAF) interval.

MAF interval All (𝑛 = 14,647) KARE (𝑛 = 8,012) HEXA (𝑛 = 3,448) CAVAS (𝑛 = 3,187)
0 66.70% 70.43% 74.32% 74.47%
(0–0.001] 14.66% 10.98% 6.97% 6.89%
(0.001–0.005] 3.21% 3.18% 3.28% 3.19%
(0.005–0.01] 1.50% 1.50% 1.49% 1.52%
(0.01–0.05] 2.98% 2.97% 3.00% 2.98%
>0.05 10.95% 10.95% 10.94% 10.94%

generated by GenomeStudio. Sample and variant quality
control of reclustered genotype data was performed following
extraction of data using the PLINK format [13]. We rear-
ranged three types of misclassified clusters using GenomeS-
tudio as follows: (1) small number of variants misclassified
with the AB genotype (Supplementary Figure 2a in Supple-
mentaryMaterial available online at http://dx.doi.org/10.1155/
2015/421715), (2) some misclassified variants with a lower
Norm 𝑅 score and wide Norm Theta distribution (Supple-
mentary Figure 2b), and (3) a short range for a cluster bound-
ary (Supplementary Figure 2c).

To test the effects of our customized cluster file, we
performed automated clustering on patient data for 804
Koreans with diabetic retinopathy using a customized cluster
file instead of the default cluster file. Then, we compared
results from default and customized cluster files.

2.4. Quality Control of SNPs and Samples. We used PLINK
for quality control for both samples and genotypes. First,
relatives defined based on identity-by-descent and samples
with sex inconstancies were excluded through the PLINK
options of “--genome” and “--check-sex”, respectively. Also,
samples with low call rate (<99%) were thrown out by option
“--mind”. Next, PLINK option “--geno 0.95 (call rate <
95%)” was used to remove variants with completely missing
data or having a low call rate. Also, additional variants
were excluded based on deviation from Hardy-Weinberg
Equilibrium (HWE), a below-threshold 𝑃 value (HWE 𝑃 <
0.000001), and minor allele count (MAC) < 2. Duplicated
variants were removed.

2.5. Overall Accuracy, Accuracy of Heteroallele, and Nonref-
erence Concordance between Exome Chip and Whole-Exome
Sequencing Data. For performance comparisons of manual
reclustering, we compared exome chip data with or without
reclustering process to whole-exome sequencing data. Exome
chip data were extracted to PLINK format and quality control
process was performed as described above. And whole-
exome sequencing data for 185 samples which were the same
as our exome chip samples was produced with the Illumina-
Hiseq2000 platform (70x coverage).These datawere analyzed
with the Genome Analysis ToolKitv2 (GATKv2) pipeline.
Also off-target variants of whole-exome sequencing datawere
removed from each exome chip data for further analysis. In
addition, overall accuracies of heteroalleles and nonreference
concordances were calculated by our in-house customized
python script.

2.6. Annotation. Exome chip variants were annotated with
Annovar software (http://www.openbioinformatics.org/an-
novar).The annotation data files needed for runningAnnovar
can be downloaded by option “--downdb”. Supplementary
Table 2 shows the number of variants within each functional
category.

3. Results

3.1. Characteristics of Genotypes. A total of 242,766 genotypes
were converted to PLINK format. MAF of all genotypes
was calculated using option “--freq” within the PLINK tool.
Table 2 summarizes the proportion of genotype by MAF
interval of each cohort. Monomorphic variants accounted for
>70% of those found in HEXA (𝑛 = 3,448) and CAVAS (𝑛 =
3,187) samples. From all 14,647 samples, we found that 66%
of the data was accounted for by monomorphic variants.This
percentage was slightly different than that found for the 777-
sample CHARGE data set.

3.2. Quality Control. With regard to sample selection, sam-
ples were excluded through the quality control process as
follows: (1) samples that were estimated as relatives based on
identity-by-descent (𝑛 = 579), (2) sex inconsistency (Fail,
𝑛 = 55), and (3) low call rate per sample (<99%, 𝑛 = 61).
Regarding variant selection, variants which are monomor-
phic withMAF > 0.001% (𝑛 = 162,757), deviated fromHardy-
Weinberg Equilibrium (𝑃 value < 10−6, 𝑛 = 1,185), and with
low call rate per genotype (<95%, 𝑛 = 24) were excluded.
Consequently, 77,204 SNPs of 14,056 samples remained.

3.3. Genotype Calling Accuracy of the Exome Chip. To evalu-
ate the variant calling accuracy of our method, we calculated
overall concordance with frequency rates between exome
chip and whole-exome sequencing data. After quality control
process, a total of 78,114 and 77,204 variants remained before
and after manual reclustering, respectively. Consequently,
among those, 29,959 and 29,850 from before and after
reclustering, respectively, were extracted for comparing per-
formance. Mean and standard deviation of overall accuracy
ratewere calculated byMAF categories such as common, low-
frequency, rare, and all variants.Overall accuracy rate showed
that results of manual reclustering were more accurate than
those of absence of manual reclustering (Table 3). Particu-
larly, overall concordance of common variants was improved
from 0.9730 to 0.9856 (Table 3).
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Figure 1: Overall workflow for genotype calling using Korean exome chip data. Left panel shows data processing and analysis for 14,647
Korean samples. Right panel shows the workflow for 804 Korean samples to test the effects of customized clustering file. The Venn diagram
in right panel describes the discrepancies between custom and default cluster files tested using exome chip data from 804 Korean diabetic
retinopathy samples.The number in red and blue circle of Venn diagram indicates the number of variants when adjusting default and custom
cluster file, respectively.

Table 3: Overall concordance rates between before and after reclus-
tering process based on minor allele frequency (MAF).

Categories by MAF Overall concordance∗

Before After
All 0.9881 ± 0.06 0.9928 ± 0.03
Common1 0.9730 ± 0.09 0.9856 ± 0.40
Less common2 0.9951 ± 0.04 0.9970 ± 0.02
Rare3 0.9983 ± 0.03 0.9994 ± 0.10
1MAF ≥ 5%, 2MAF ≥ 1% and <5%, and 3MAF < 1%.
∗Overall concordances were designated as mean ± standard deviation (SD).

Moreover, to evaluate the efficiency of identifying rare
variants, we calculated nonreference concordance and accu-
racy of heteroalleles on extreme rare variants by MAC rang-
ing from 2 to 5. Overall, nonreference concordance of after
reclustering was similar to those of before reclustering. But
with regard to accuracy of heteroalleles by MAC, accuracy of
after quality control was significantly improved compared to
those of before quality control (Supplementary Table 1).

3.4. Comparison of Custom (∗.egt) and Default Cluster File.
To examine discrepancies between custom versus default
cluster files, we used 804 additional Korean samples. For
variants and sample selection, we used the same quality
control criteria as that in the first stage of analysis. From the
quality control process, the remaining number of variants
using custom and default cluster files included 50,076 and
50,540 variants, respectively. A total of 48,956 variants were
shared between the two cluster files, whereas 1,120 and 1,584
variants were uniquely found in the custom versus default
cluster file, respectively (Figure 1). Supplementary Figure 2
shows that 1,120 misclassified variants were reclustered using
our custom cluster file.

3.5. Functional Categories of Selected Variants. Using Anno-
var, we examined the discrepancy of the functional category
of variants comparing data from before and after we applied
our quality control guidelines. Supplementary Table 2 shows
Annovar results with 15 functional categories. The rate of
exonic variants using our guidelines (87.13%) was less than
that seen implementing our guidelines (77.31%), whereas the
rate of nongenic (intergenic and intronic) variants found
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using our guidelines was higher than that before imple-
menting our guidelines (Supplementary Table 2). Moreover,
relative proportions of splicing and exonic-splicing variants
using our guidelines decreased by 0.39% and 0.67%, whereas
the abundances of other variants increased. Supplementary
Figure 1 shows the distribution of variants on each chromo-
some; variants found using our guidelines were not biased to
a particular chromosome.

4. Discussion

Exome chip methodologies constitute a unique platform to
perform large-scale GWASs. Not only is the price of an exome
chip lower than that of other kinds of genotyping arrays, but
also an exome chip focuses on the discovery of rare variants
in exonic regions, which can be associated with complex
diseases.TheCHARGE consortium reported best approaches
for genotype calling related to the HumanExome BeadChip
[11]. They suggested that a custom cluster file (∗.egt) be
applied to attain more accurate genotype data. However,
because the HumanExome BeadChip was developed based
on the genetics of a Caucasian population, substantial vari-
ants were monomorphic when we conducted GWASs using
other ethnic samples, such as Koreans (Table 2). Therefore,
proper genotype calling guidelines that consider ethnic dif-
ferences can be important attributes of large-scale GWASs
using exome chips.

Here, we propose a suitable exome chip genotype calling
process to apply to Korean samples. To reduce the number
of variants that were excluded by the automated genotype
calling method, we paid attention to two issues in the process
of quality control.

First, we adjusted several scores of automated clustering
criteria such as call frequency rate and MAF of AB cluster
error. When we applied automated clustering criteria rec-
ommended by the CHARGE consortium, more than half of
variants were identified to be requiring manual reclustering
using those filters (Table 1). Therefore, remaining data were
too small to conduct a GWAS with respect to rare variants
which can be a cause of rare diseases. To resolve this problem,
we lowered several cut-offs.Through this process the number
of excluded variants decreased by 46,070 variants (Table 1).
However, the increased number of remaining variants due
to lowered quality control threshold compared to CHARGE
consortium guideline did not affect overall accuracy of
variants (Table 3 and Supplementary Table 1).

Second, misclassified variants were rearranged by man-
ual reclustering. We remedied three types of representative
misclassification patterns, which could be reclassified among
46,070 variants (Supplementary Figure 2). As shown in
Supplementary Figure 2, our correction process was robust
enough to detect low-frequency and rare variants. From this
correction process, 5,038 variants were restored as additional
variants. Consequently, 77,204 variants were used as back-
ground data within the customized cluster file (∗.egt).

To evaluate the accuracy of the genotype call, we com-
pared concordance rates between exome chip and whole-
exome sequencing data obtained from the 185 same individ-
uals. More than 99% of variants were the same genotype as

each other (Table 3). Particularly, the concordance rate for
rare variants was close to 99.9%, supporting the robustness
of our data for rare variants.

We applied the customized cluster file (∗.egt) to genotype
calling for 804 independent individuals. When we compared
the remaining variants using the custom cluster file to those
using the default cluster file, 48,956 variants were shared
between the cluster files. Only 1,120 variants were uniquely
found in our custom cluster files. The fact that we identified
a relatively small number of variants may be attributable to
the relatively small sample size with respect to finding a rare
variant. Therefore, it remains possible that our customized
cluster file would identify a larger number of variants if
applied to larger sample sizes. In addition, we examined the
number of functional variants before and after reclustering.
As shown in Supplementary Table 2, we could not find bias
of the number of functional variants after our approach.

Taken together, we think that our approach can provide
larger number of variants with high accuracy for association
analysis in Korean exome chip data. Moreover, prior knowl-
edge data (∗.egt) can be valuable reference information for
performing variant clustering of exome chip data. Our study
can provide practical quality control guidelines for exome
array-based GWAS using Korean population.

Although there is a limitation due to the recruitment
of Korean samples only, we firstly tried to apply alternative
criteria for quality control of exome chip data produced with
a large scale of Asian population (more than 10,000 individ-
uals). Consequently, we could substantially improve the call
rate of Asian-specific rare variants. Considering similar allele
distributions betweenKoreans and theChinese/Japanese, our
alternatively suggested criteria using a large scale of Korean
population may be applied to other East Asian populations.
Further investigations might be needed whereas our criteria
for quality control would be applied to other Asian ancestry,
such as Southeastern Asians.

5. Conclusion

Wesuggest practical guidelines for exome chip quality control
for variant analysis in Korean populations. We also provide
comprehensive evaluation of the results using whole-exome
sequencing data. Moreover, ours is the first study to describe
the practical use of variant calling and genotype clustering
in Korean populations. Our study allows an efficient method
to detect exonic variants as well as low-frequency and rare
variants. Furthermore, the modified criteria for genotype
quality control and clustering we suggested might be possible
to be extensively applied to other East Asian populations.
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